US009317287B2

a2 United States Patent 10) Patent No.: US 9,317,287 B2
Morishita 45) Date of Patent: Apr. 19, 2016
(54) MULTIPROCESSOR SYSTEM (56) References Cited
(75) Inventor: Hiroyuki Morishita, Osaka (JP) U.S. PATENT DOCUMENTS
. 5,361,352 A 11/1994 TIwasawa et al.
(73) Assignee: PANASONIC INTELLECTUAL 6280473 Bl 9/2001 Takase
PROPERTY MANAGEMENT CO., 2013/0145084 Al* 6/2013 Hiromatsu GOGF 12/0246
LTD., Osaka (JP) 711/103
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
CN 101231584 7/2008
(21) Appl.No: 14/232,389 (Continued)
OTHER PUBLICATIONS
(22) PCT Filed: Jun. 6,2012
Office Action issued Jun. 2, 2015 in Chinese Application No.
(86) PCT No.: PCT/JP2012/003704 201280035369.5, with partial English translation.
$371 (©)(1) (Continued)
(2), (4) Date: Jan. 13, 2014
Primary Examiner — Scott Sun
(87) PCT Pub. No.: W02013/011620 (74) Attorney, Agent, or Firm — Wenderoth, Lind & Ponack,
L.L.P.
PCT Pub. Date: Jan. 24, 2013
ub. Later Jan. =4, (57) ABSTRACT
(65) Prior Publication Data To provide a multi-processor system that efficiently debugs
US 2014/0136821 Al Mav 15. 2014 operations of one processor and operations of another pro-
Yo cessor. The multiprocessor system has a first processor and a
. s T second processor that executes processing by receiving noti-
(30) Foreign Application Priority Data fication from the first processor. The first processor: sequen-
Jul. 19,2011 (JP) 2011-158123 tially specifies instructions to be executed from an instruction
CUT TR A S e queue; sends a notification based on a processing request
(51) Int.Cl instruction to the second processor when an instruction that is
G 0;$F 9 /38 2006.01 specified is the processing request instruction; executes the
GOGF 930 (200 6. 0 l) instruction that is specified when the instruction that is speci-
.(01) fied is not the processing request instruction; and determines
(Continued) whether or not a debug mode is set. When the first processor
determines that the debug mode is set, the first processor stops
(52) U.S.CL IINes eoug ruelirstp 0P
CPC GOGF 9/30145 (2013.01); GOGF 9/30185 ~ SPecilying instructions daftef{ SPeCngmg Itlhe processing
"""" I s . request 1instruction, and, after sending the notification,
5330;;7012)6 1G30(;$ f .9 g 0‘231? 383122012)6 gogf resumes specifying instructions after detecting that the sec-
.) (o); (01) ond processor has completed processing corresponding to the
(58) Field of Classification Search notification.

None
See application file for complete search history.

7 Claims, 9 Drawing Sheets

Debug mode | [Tnstruc

unit

Detastion uni]

03)

Register
fle

le—|
110)
106|
107

Main proce:

Computing unit group. jomj 5
108 107a 107b 107¢
100

Multiprosessor system

US 9,317,287 B2

Page 2
(51) Int.ClL JP 7-319694 12/1995
Goal 1156 (2006.01 T 200620375 102006
Go6F 9/00 (2006.01) JP 2007-4364 1/2007
WO 2006/123546 11/2006

(56) References Cited
OTHER PUBLICATIONS
FOREIGN PATENT DOCUMENTS International Search Report issued Sep. 4, 2012 in International
1P 1-106234 4/1989 (PCT) Application No. PCT/JP2012/003704.

Jp 3-218539 9/1991
Jp 6-59908 3/1994 * cited by examiner

U.S. Patent Apr. 19,2016 Sheet 1 of 9 US 9,317,287 B2

FIGA
10
/./
101 »
Instruction |~ |/
memory
102
A 4
Instruction fetch
i’ control unit
¢ 103
Instruction group o
determination unit
¢ 104
11 Instruction buffer
105
/J A 4 /j
Debug mode Instruction issuing 12
determination [getermination unit ol
unit 201
Instruction 4
specification unit
Instruction
execution unit 302 /1 21
203
—
110 i 126
/_/ Instruction L
processing
v 106 unit 122
Register |/ Register ol
file file
)07 123
- - \ 4 A 4 /‘/
Computing unit group Computing unit group
108 107a 107b 107c¢ 124 123a 123b 123¢c
AEA
Memory Memory
access unit access unit
y Y
v 109 v 125
Data memory -~ Data memory |~/
Main processor Coprocessor
Multiprocessor system

U.S. Patent Apr. 19, 2016

@1 instruction issuing determination prooe@

Instruction

instruction buffer 104?

Debug mode is set?

Coprocessor

€S

A 4

that can be issued exists in

is executingW
Y

—)

Sheet 2 of 9 US 9,317,287 B2
FIG.2
S5
No
No
S20 S25
y Yo

/./

Determine that
instruction is not issued

Determine that instruction is issued,
read instruction to be issued from
instruction buffer

U.S. Patent

Main processor

Coprocessor

US 9,317,287 B2

Apr. 19,2016 Sheet 3 of 9
FIG.3
t5 t20
>r Vud >
1
v t10
1
v t15
X Jad R

U.S. Patent Apr. 19,2016 Sheet 4 of 9 US 9,317,287 B2

FIG.4
t50 t70
Main Jad :\‘ ———————— % o
1 !
processor “ t55 ;:}65
\ 160 /
| Vo o

Coprocessor

U.S. Patent Apr. 19,2016 Sheet 5 of 9 US 9,317,287 B2

FIG.5
1000
/_/
101
Instruction |~ /1001
memory
102
Instruction fetch
control unit
¢ 103
Instruction group o
determination unit
* 104
Instruction buffer
1111 1105
/J A 4 f/
Debug mode Instruction issuing 1002
determination [determination unit ~
unit 1201
Instruction |~
specification unit
Instruction
execution unit }-1202 /_/121
126
S~ 110 [nstruction ~
processing
v 106 unit //1 22
Register |~ Register
file file
107
123
- - /J) 4) 4 /‘/
Computing unit group Computing unit group
108 107a 107b 107c 124 123a 123b 123¢
A
Memory Memory
access unit access unit]
v 109] v 125
Data memory |~ Data memory
Main processor Coprocessor
Multiprocessor system

U.S. Patent Apr. 19,2016 Sheet 6 of 9 US 9,317,287 B2
FIG.6
@n instruction issuing determination proce@

) 4 ()

S100

Instruction
NO 7 that can be issued exists in
' instruction buffer 1047
Yes 105
First debug mode Yes
is set? S110
Coprocessor No

No

S115

is executing processing?

Yes

No

Second debug mode
is set?

Y
©s S120

Instruction to be issued
is processing request instruction
to coprocessor?

Yes 5125

Coprocessor is

No

executing pLOW

y

Yes
< (b) S130

<—® S135
v Yad

Determine that instruction
is not issued

Determine that instruction is issued,
read instruction to be issued from
instruction buffer

Y

©

U.S. Patent Apr. 19,2016 Sheet 7 of 9 US 9,317,287 B2

FI1G.7
/Jt1 00 /}1 15 1120 1140
. _ _ 2
Mrilcr:]essor K] '?i §125
1
P \ 1105 130
! t110 %/ t135
1
Coprocessor 1 Il " Vil >

U.S. Patent Apr. 19,2016 Sheet 8 of 9 US 9,317,287 B2

FIG.8
J1 505
- N
1504 - Inverse quantization (IQT) and
~ inverse frequency conversion
Variable—length decoding (VLD) * Motion compensation (MC)
processing of signals subjected Image re?oon.s,tructlon (Recon))
to variable—length encoding - Deblocking filter (DBF) processing
1501
1502 1503 ~

% %

Main processor Coprocessor

U.S. Patent Apr. 19,2016 Sheet 9 of 9 US 9,317,287 B2

FIG.9

1605

/
mllotion estimation processing of \

1604 calculating predicted difference
Jod with respect to image data
- Quantization processing of frequency
conversion and quantization of
predicted difference
- Processing pertaining to generating
reference image

- Motion compensation)

Encoding processing of performing
variable—length encoding of quantized
discrete cosine transform (DCT)
coefficient and movement vector

1601
1602 1603
)% %

Main processor Coprocessor

US 9,317,287 B2

1
MULTIPROCESSOR SYSTEM

TECHNICAL FIELD

The present invention is related to technology improving
software debugging efficiency in multiprocessor systems that
include a main processor and a coprocessor.

BACKGROUND ART

The amount of computation required for media processing
such as compression, decompression, and other media pro-
cessing of digitized image data, audio data, etc., is very large.
Thus, specialized hardware, high performance digital signal
processors (DSP), etc., for performing such media process-
ing, are in widespread use.

Regarding such media processing, a very large number of
standards are in use: MPEG-2, MPEG-4 (MPEG is short for
Moving Picture Experts Group), H.263, H.264, etc. Thus,
digital audio-visual (AV) equipment is required to handle
media processing using multiple standards. Further, the com-
plexity of media processing applications is tending to
increase, and image size, number of audio channels, etc., are
all tending to increase, and therefore the amount of compu-
tation required is increasing.

Accordingly, increased media processing performance is
achieved by using a high-performance processor provided
with a coprocessor specialized in specific computations,
which greatly increases computational efficiency.

In a multi-processor system that includes a coprocessor,
when there is no software data dependency and no hardware
resource conflict between processing at the main processor
and processing at the coprocessor, performance is further
increased by simultaneously executing the processing at the
main processor and the processing at the coprocessor.

For example, Patent Literature 1 discloses setting execu-
tion modes of a main processor and a coprocessor (a floating-
point number processing unit (FPU)) and causing instructions
execution operations of the processors to change. According
to Patent Literature 1, instruction execution modes (serial or
scalar) of the main processor and the coprocessor (FPU) are
matched, such that when floating-point instructions (assigned
to the coprocessor) are to be executed, a control is performed
of matching the instruction execution mode of the main pro-
cessor with the instruction execution mode of the coprocessor
(FPU). Thus, processing by the main processor and the copro-
cessor is performed at the same time.

CITATION LIST
Patent Literature

[Patent Literature 1]
Japanese Patent Application Publication No. H7-319694

SUMMARY OF INVENTION
Technical Problem

However, according to the technology described above,
while operations are simplified and performance is increased
by synchronizing the instruction execution mode of the main
processor with the operation of the coprocessor, efficiency of
software debugging of the main processor and coprocessor is
decreased.

10

15

20

25

30

35

40

45

50

55

60

2

The present invention aims to provide a multi-processor
system and method that efficiently debugs operations of one
processor and operations of another processor.

Solution to Problem

To achieve the above aim, the present invention provides a
multiprocessor system comprising a first processor and a
second processor that executes processing by receiving a
notification from the first processor, wherein the first proces-
sor includes: a determination unit configured to determine
whether or not a debug mode is set; a specification unit
configured to sequentially specify instructions to be executed
from an instruction queue; an execution unit configured to,
when an instruction that is specified is a processing request
instruction that requests processing by the second processor,
send a notification that is based on the processing request
instruction to the second processor, and, when an instruction
that is specified is not the processing request instruction,
execute the instruction that is specified; and a detection unit
configured to detect completion, by the second processor, of
the processing corresponding to the notification, and when
the determination unit determines that the debug mode is set,
the specification unit stops specifying instructions upon
specifying the processing request instruction, and resumes
specifying instructions after the detection unit detects the
completion of the processing corresponding to the notifica-
tion.

Advantageous Effects of Invention

According to the above configuration, the multiprocessor
system, when the determination unit determines that the
debug mode is set, and upon specification of a processing
request instruction, suspends specification of subsequent
instructions. After detection that processing corresponding to
the processing request instruction is completed, the multipro-
cessor system resumes specification of instructions. Thus,
since specification of instructions is suspended after specify-
ing the processing request instruction, instructions processed
by the second processor and instructions after the specifica-
tion of the processing request instruction are not issued in
parallel, and therefore debugging is performed efficiently.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an illustration of the configuration of a multipro-
cessor system 10.

FIG. 2 is a flowchart of processing to determine instruction
issuing.

FIG. 3 is an illustration for explaining processing by a main
processor 11 and a coprocessor 12 in a normal mode.

FIG. 4 is an illustration for explaining processing by the
main processor 11 and the coprocessor 12 in a debug mode.

FIG. 5 is an illustration of the configuration of a multipro-
cessor system 1000.

FIG. 6 is a flowchart of processing to determine instruction
issuing.

FIG. 7 is an illustration for explaining processing by a main
processor 1001 and a coprocessor 1002 in a second debug
mode.

FIG. 8 is an illustration for explaining decoding by the
multiprocessor system 10.

FIG. 9 is an illustration for explaining encoding by the
multiprocessor system 10.

US 9,317,287 B2

3
DESCRIPTION OF EMBODIMENT

[Knowledge Used as a Basis for the Present Invention]

The technology disclosed in Patent Literature 1, as men-
tioned above, simplifies operations and increases perfor-
mance by synchronizing the instruction execution mode of
the main processor to the operation of the coprocessor.

However, by using the technology disclosed in Patent Lit-
erature 1, efficiency of software debugging of the main pro-
cessor and coprocessor is decreased. For example, in a case in
which software running on the coprocessor erroneously
destroys a portion of a memory region that is used by the main
processor, simultaneously executing software debugging in
parallel on the main processor and the coprocessor makes
isolating the program that caused the malfunction difficult. In
such a case, whether the malfunction is a malfunction result-
ing from an instruction queue executed by the main processor
or from an instruction queue executed by the coprocessor is
unclear. In other words, whether the malfunction is a software
malfunction of software executed by the main processor or a
software malfunction of software executed by the coproces-
sor is unclear.

The present inventor investigated extensively, arrived at a
multiprocessor system able to efficiently debug operations of
one processor and operations of another processor, and made
the present invention.

One aspect of the present invention is a multiprocessor
system comprising a first processor and a second processor
that executes processing by receiving a notification from the
first processor, wherein the first processor includes: a deter-
mination unit configured to determine whether or not a debug
mode is set; a specification unit configured to sequentially
specify instructions to be executed from an instruction queue;
an execution unit configured to, when an instruction that is
specified is a processing request instruction that requests
processing by the second processor, send a notification that is
based on the processing request instruction to the second
processor, and, when an instruction that is specified is not the
processing request instruction, execute the instruction that is
specified; and a detection unit configured to detect comple-
tion, by the second processor, of the processing correspond-
ing to the notification, and when the determination unit deter-
mines that the debug mode is set, the specification unit stops
specifying instructions upon specifying the processing
request instruction, and resumes specitying instructions after
the detection unit detects the completion of the processing
corresponding to the notification.

1. Embodiment 1

The following is an explanation of embodiment 1 of the
present invention, given with reference to the drawings.

1.1 Configuration

FIG. 1 is a block diagram of the configuration of a multi-
processor system 10 pertaining to embodiment 1.

As shown in FIG. 1, the multiprocessor system 10 includes
a main processor 11 and a coprocessor 12. When the multi-
processor system 10 is not set to a debug mode, in other words
when the multiprocessor system 10 is set to a normal mode,
the main processor 11 and the coprocessor 12 perform pro-
cessing in parallel. When the multiprocessor system 10 is set
to the debug mode, the main processor 11 and the coprocessor
12 do not perform processing in parallel.

(1) Main Processor 11

As shown in FIG. 1, the main processor 11 includes an
instruction memory 101, an instruction fetch control unit 102,
an instruction group determination unit 103, an instruction
buffer 104, an instruction issuing determination unit 105, a

20

30

40

45

4

register file 106, a computing unit group 107, a data memory
109, a write-back bus 110, and a debug mode determination
unit 111.

(1-1) Instruction Memory 101

The instruction memory 101 is a memory that stores
instructions to be executed at the main processor 11. The
instruction memory 101 stores an instruction stream com-
posed of a plurality of instructions.

(1-2) Instruction Fetch Control Unit 102

The instruction fetch control unit 102 has a program
counter (PC), and together with reading an instruction to be
executed next from the instruction memory 101, updates a
value of the program counter to a value corresponding to an
instruction to be read next from the instruction memory 101.

Further, the instruction fetch control unit 102 receives,
from the computing unit group 107, branch instruction execu-
tion and branch processing requests for special processing
vectors that correspond to exceptional events, and controls
the program counter accordingly.

(1-3) Instruction Group Determination Unit 103

The instruction group determination unit 103 reads instruc-
tions belonging to the instruction stream from the instruction
memory 101, decodes the instructions, and writes the instruc-
tions to the instruction buffer 104.

(1-4) Instruction Buffer 104

The instruction buffer 104 receives and stores the instruc-
tions belonging to the instruction stream.

(1-5) Debug Mode Determination Unit 111

The debug mode determination unit 111 determines
whether or not the debug mode is set.

Specifically, the debug mode determination unit 111 stores
a debug mode designation register, determines whether or not
the debug mode is set according to a value of the debug mode
designation register, and notifies the instruction issuing deter-
mination unit 105 of whether or not the debug mode is set.
Here, the debug mode designation register is a control register
that is set by software.

(1-6) Instruction Issuing Determination Unit 105

During each machine cycle, the instruction issuing deter-
mination unit 105 determines an instruction to be issued from
the instruction buffer 104. According to the instruction thus
determined, the main processor 11 executes the instruction or
performs a processing request to the coprocessor 12.

As shown in FIG. 1, the instruction issuing determination
unit 105 has an instruction specification unit 201, an instruc-
tion execution unit 202, and a detection unit 203.

During each machine cycle, the instruction specification
unit 201 specifies an instruction to be issued from the instruc-
tion buffer 104. When the debug mode determination unit 111
determines that the debug mode is set, and the coprocessor 12
is executing processing, the instruction specification unit 201
stops specifying instructions to be issued. When the process-
ing by the coprocessor 12 is completed, the instruction speci-
fication unit 201 resumes specifying instructions to be issued.

When an instruction specified by the instruction specifica-
tion unit 201 is an instruction requesting processing to the
coprocessor 12 (hereafter, “processing request instruction”),
the instruction execution unit 202 sends a notification (here-
after, “activation instruction”) to the coprocessor 12, based on
the processing request instruction. Also, when an instruction
specified by the instruction specification unit 201 is not the
processing request instruction, the instruction execution unit
202 executes the instruction. In other words, processing based
on the instruction is performed at the computing unit group
107.

The detection unit 203 is for detecting completion of pro-
cessing by the coprocessor 12 when the debug mode deter-

US 9,317,287 B2

5

mination unit 111 determines that the debug mode is set.
Specifically, the detection unit 203 judges that the coproces-
sor 12 is executing processing while receiving a signal (for
example, a busy signal) output from the coprocessor 12.
When no longer receiving the busy signal, the detection unit
203 judges that the processing by the coprocessor 12 is com-
pleted.

(1-7) Register File 106

The register file 106 is a register group that stores data that
is read or written to when the instruction stream stored at the
instruction buffer 104 is executed.

(1-8) Computing Unit Group 107

The computing unit group 107 is a processing unit that
includes a plurality of computing units such as an adder, a
multiplier, etc. Specifically, the computing unit group 107
includes a computing unit 1074, a computing unit 1075, and
a computing unit 107¢. As shown in FIG. 1, the computing
unit group 107 also has a memory access unit 108.

Here, the memory access unit 108 is a computing unit for
executing an instruction to access the data memory 109.

(1-9) Write-Back Bus 110

The write-back bus 110 is a bus for writing back output
from the computing unit group 107 to the register file 106.

(1-10) Data Memory 109

The data memory 109 is accessed according to the instruc-
tion to access the data memory 109. The data memory 109
stores data used when a program is executed.

(2) Coprocessor 12

As shown in FIG. 1, the coprocessor 12 includes an instruc-
tion processing unit 121, a register file 122, a computing unit
group 123, a data memory 125, and a write-back bus 126.

(2-1) Instruction Processing Unit 121

The instruction processing unit 121 activates and executes
a coprocessor instruction stream by receiving the activation
instruction from the instruction issuing determination unit
105.

The instruction processing unit 121 stores a plurality of
coprocessor instruction streams that are independent from the
instruction stream of the main processor 11. The activation
instruction from the main processor 11 includes information
designating which one of the plurality of coprocessor instruc-
tion streams is to be executed. For example, if three-bit des-
ignation information is included in the activation instruction,
one of eight types of coprocessor instruction streams may be
designated.

While a coprocessor instruction stream has been activated
and is being executed, the instruction processing unit 121
outputs a busy signal to the instruction issuing determination
unit 105 of the main processor 11. The instruction processing
unit 121 stops outputting the busy signal when execution of
the coprocessor instruction stream that has been activated is
completed. Here, the coprocessor instruction stream includes
an instruction indicating the end of the coprocessor instruc-
tion stream. When the instruction indicating the end of the
coprocessor instruction stream is reached as a result of
sequentially executing the coprocessor instruction stream, the
instruction is treated as the completion of processing by the
coprocessor 12.

(2-2) Register File 122

The register file 122 is a register group that stores data that
is read or written to when the coprocessor instruction stream
is executed.

(2-3) Computing Unit Group 123

The computing unit group 123 is a processing unit that
includes a plurality of computing units such as an adder, a
multiplier, etc., that are used according to the coprocessor
instruction stream.

40

45

55

6

Further, as shown in FIG. 1, the computing unit group 123
also has a memory access unit 124. Here, the memory access
unit 124 is a computing unit for executing an instruction to
access the data memory 125.

(2-4) Write-Back Bus 126

The write-back bus 126 is a bus for writing back output
from the computing unit group 123 to the register file 122.

(2-5) Data Memory 125

The data memory 125 is accessed according to the instruc-
tion to access the data memory 125. The data memory 125
stores data used when a program is executed.

1.2 Operation

Here, the flowchart shown in FIG. 2 is used in explaining
processing by the instruction issuing determination unit 105
for determining whether an instruction is to be issued in a
given cycle. Here, the processing for determining whether an
instruction is to be issued in a given cycle is an operation of
determining, from instructions accumulated in the instruction
buffer 104, an instruction to be transferred to the computing
unit group 107, and thereby executed.

The instruction specification unit 201 checks whether an
instruction that can be issued exists in the instruction buffer
104 (step S5). Here, an instruction that can be issued is an
instruction that has been assigned a valid signal in the instruc-
tion buffer 104. Cases in which an instruction that has been
assigned a valid signal does not exist in the instruction buffer
104 are primarily cases in which the supply of instructions to
the instruction buffer 104 is insufficient due to causes such as
branching, memory access latency, etc. Further, cases in
which an instruction that has been assigned a valid signal does
not exist in the instruction buffer 104 may include cases in
which an instruction has been supplied, but a valid signal has
not been assigned due to data dependency from a previous
instruction not being resolved.

When an instruction that has been assigned a valid signal
exists in the instruction buffer 104 (“Yes™ at step S5), the
instruction specification unit 201 checks whether or not the
debug mode is set (step S10). Checking whether or not the
debug mode is set is performed based on the result of the
determination by the debug mode determination unit 111.

When the instruction specification unit 201 judges that the
debug mode is set (“Yes™ at step S10), the detection unit 203
checks whether or not the coprocessor 12 is executing pro-
cessing (step S15). Checking whether or not the coprocessor
12 is executing processing is performed based on whether or
not the detection unit 203 is receiving the busy signal output-
ted from the instruction processing unit 121.

When the coprocessor 12 is executing processing (“Yes” at
step S15), the instruction specification unit 201 determines
that an instruction is not issued in the current cycle (step S20),
and processing returns to step S5.

When an instruction that has been assigned a valid signal
does not exist in the instruction buffer 104 (“No” at step S5),
operation of the instruction specification unit 201 proceeds to
step S20.

When judging that the debug mode is not set (“No” at step
S10), or that the coprocessor 12 is not executing processing
(“No” at step S15), the instruction specification unit 201
determines that an instruction is issued in the current cycle
(step S25), and processing returns to step S5.

1.3 Specific Example

Here, explanation is provided of processing of the main
processor 11 and processing of the coprocessor 12, in a case
in which the normal mode is set and a case in which the debug
mode is set.

US 9,317,287 B2

7

First, an explanation is given of a case in which the normal
mode is set, using FIG. 3.

When the normal mode is set and the main processor 11 is
executing instructions from an instruction stream (t5), a noti-
fication is sent to the coprocessor 12 based on a processing
request instruction (t10). Upon receiving the notification, the
coprocessor 12 activates and executes processing (t15). Fur-
ther, when the normal mode is set, since there is no depen-
dency between processing of the coprocessor 12 and process-
ing of the main processor 11, the main processor 11 continues
to execute subsequent processing (120).

Next, an explanation is given of a case in which the debug
mode is set, using FIG. 4.

When the debug mode is set and the main processor 11 is
executing instructions from an instruction stream (t50), a
notification is sent to the coprocessor 12 based on a process-
ing request instruction (t55). Upon receiving the notification,
an operation at the coprocessor 12 activates and processing is
executed (t60). While the operation is being performed at the
coprocessor 12 during 160, the coprocessor 12 outputs the
busy signal to the main processor 11. While the main proces-
sor 11 is receiving the busy signal, the main processor 11 does
not execute processing. When the operation at the coproces-
sor 12 is completed, the coprocessor 12 stops outputting the
busy signal (t65). When the main processor 11 detects the
completion of the operation at the coprocessor 12, the main
processor 11 resumes processing (t70).

In this way, when the debug mode is set and processing of
the coprocessor 12 is started, subsequent processing at the
main processor 11 is not executed. Thus, non-operation of the
main processor 11 is guaranteed during a period in which the
coprocessor 12 is operating. Further, in one sequence of
operations, an operation using parallelism between instruc-
tions at the main processor 11 and an operation using paral-
lelism between instructions at the coprocessor 12 are
executed in essentially the same way as the programmer of
the sequence of operations (non-debug mode operations) ulti-
mately intended.

1.4 Summary

According to the above, the multiprocessor system 10 per-
taining to the present embodiment is able to perform switch-
ing, based on whether or not the debug mode is set, between
performing execution of an instruction by the coprocessor 12
in parallel with execution of an instruction by the main pro-
cessor 11, and performing execution of an instruction by the
coprocessor 12 while preventing execution of an instruction
by the main processor 11.

According to the present embodiment, isolating causes of
malfunctions when debugging a high-performance processor
with a coprocessor is performed easily, without modification
by software.

2. Embodiment 2

The following is an explanation of embodiment 2 of the
present invention, given with reference to the drawings.

2.1 Configuration

FIG. 5 is a block diagram of the configuration of a multi-
processor system 1000 pertaining to embodiment 2.

The multiprocessor system 1000 has, in addition to func-
tions in the debug mode (hereafter, “first debug mode”) indi-
cated in embodiment 1, functions in a second debug mode.

An explanation of the functions in the second debug mode
follows. Functional elements that are the same as the func-
tional elements in embodiment 1 have the same symbols as
used in embodiment 1.

10

15

20

25

30

35

40

45

50

55

60

65

8

As shown in FIG. 5, the multiprocessor system 1000
includes a main processor 1001 and a coprocessor 1002.
When the multiprocessor system 1000 is not set to a debug
mode, in other words when the multiprocessor system 1000 is
set to a normal mode, the main processor 1001 and the copro-
cessor 1002 perform processing in parallel, as in embodiment
1. When the multiprocessor system 1000 is set to the first
debug mode, the main processor 1001 and the coprocessor
1002 do not perform processing in parallel. Further, when the
multiprocessor system 1000 is set to the second debug mode,
the main processor 1001 and the coprocessor 1002 perform
processing in parallel, but the coprocessor 1002 does not
perform in parallel execution of one instruction stream and
execution of another instruction stream. In other words, the
coprocessor 1002 does not perform in parallel processing
based on one notification and processing based on another
notification.

(1) Main Processor 1001

As shown in FIG. 5, the main processor 1001 includes the
instruction memory 101, the instruction fetch control unit
102, the instruction group determination unit 103, the instruc-
tion buffer 104, an instruction issuing determination unit
1105, the register file 106, the computing unit group 107, the
data memory 109, the write-back bus 110, and a debug mode
determination unit 1111.

The following is an explanation of the function of the
instruction issuing determination unit 1105 and the debug
mode determination unit 1111.

(1-1) Debug Mode Determination Unit 1111

The debug mode determination unit 1111 determines
whether or not a debug mode is set. Further when a debug
mode is set, the debug mode determination unit 1111 deter-
mines whether the debug mode is the first debug mode or the
second debug mode.

Specifically, the debug mode determination unit 1111
stores a debug mode designation register, determines whether
the first debug mode is set, the second debug mode is set, or no
debug mode is set, according to a value of the debug mode
designation register, and notifies the instruction issuing deter-
mination unit 1105 of a result of that determination. Here, the
debug mode designation register is a control register that is set
by software.

(1-2) Instruction Issuing Determination Unit 1105

During each machine cycle, the instruction issuing deter-
mination unit 1105 determines an instruction from the
instruction buffer 104 to be issued. According to the instruc-
tion thus determined, the main processor 1001 executes the
instruction or performs a processing request to the coproces-
sor 1002.

As shown in FIG. 5, the instruction issuing determination
unit 1105 has an instruction specification unit 1201, an
instruction execution unit 1202, and a detection unit 1203.

During each machine cycle, the instruction specification
unit 1201 specifies an instruction to be issued from the
instruction buffer 104. When the debug mode determination
unit 1111 determines that the first debug mode is set, opera-
tions are performed as described above in embodiment 1.

When (i) the debug mode determination unit 1111 deter-
mines that the second debug mode is set, (ii) an instruction to
be issued is a processing request instruction to the coproces-
sor 1002, and (iii) the coprocessor 1002 is executing process-
ing, the instruction specification unit 1201 stops specifying
instructions to be issued. When processing by the coprocessor
1002 is completed, the instruction specification unit 1201
resumes specifying instructions to be issued.

When an instruction specified by the instruction specifica-
tion unit 1201 is a processing request instruction to the copro-

US 9,317,287 B2

9

cessor 1002, the instruction execution unit 1202 sends the
activation instruction to the coprocessor 1002. Also, when an
instruction specified by the instruction specification unit 1201
is not the processing request instruction to the coprocessor
1002, the instruction execution unit 1202 executes the
instruction. In other words, processing based on the instruc-
tion is performed at the computing unit group 107.

The detection unit 1203 is for detecting completion of
processing by the coprocessor 1002 when the debug mode
determination unit 1111 determines that the first debug mode
or the second debug mode is set. Specifically, the detection
unit 1203 judges that the coprocessor 1002 is executing pro-
cessing while receiving a signal (for example, a busy signal)
output from the coprocessor 1002. When no longer receiving
the busy signal, the detection unit 1203 judges that the pro-
cessing by the coprocessor 1002 is completed.

2.2 Operation

Here, the flowchart shown in FIG. 6 is used in explaining
processing by the instruction issuing determination unit 1105
for determining whether an instruction is to be issued in a
given cycle. Here, the processing for determining whether an
instruction is to be issued in a given cycle is an operation of
determining, from instructions accumulated in the instruction
buffer 104, an instruction to be transferred to the computing
unit group 107, and thereby executed.

The instruction specification unit 1201 checks whether an
instruction that can be issued exists in the instruction buffer
104 (step S100). Here, an instruction that can be issued is an
instruction that has been assigned a valid signal in the instruc-
tion buffer 104. Cases in which an instruction that has been
assigned a valid signal does not exist in the instruction buffer
104 are primarily cases in which the supply of instructions to
the instruction buffer 104 is insufficient due to causes such as
branching, memory access latency, etc. Further, cases in
which an instruction that has been assigned a valid signal does
not exist in the instruction buffer 104 may include cases in
which an instruction has been supplied, but a valid signal has
not been assigned due to data dependency from a previous
instruction not being resolved.

When an instruction that has been assigned a valid signal
exists in the instruction buffer 104 (“Yes™ at step S100), the
instruction specification unit 1201 checks whether or not the
first debug mode is set (step S105). Checking whether or not
the first debug mode is set is performed based on the result of
the determination by the debug mode determination unit
1111.

When the instruction specification unit 1201 judges that
the first debug mode is set (“Yes” at step S105), the detection
unit 1203 checks whether or not the coprocessor 1002 is
executing processing (step S110). Checking whether or not
the coprocessor 1002 is executing processing is performed
based on whether or not the detection unit 1203 is receiving
the busy signal outputted from the instruction processing unit
121.

When the coprocessor 1002 is executing processing (“Yes”
at step S110), the instruction specification unit 1201 deter-
mines that an instruction is not issued in the current cycle
(step S130), and processing returns to step S100.

When judging that the coprocessor 1002 is not executing
processing (“No” at step S110), the instruction specification
unit 1201 determines that an instruction is issued in the cur-
rent cycle (step S135), and processing returns to step S100.

10

15

20

25

30

40

45

50

55

60

65

10

When an instruction that has been assigned a valid signal
does not exist in the instruction buffer 104 (“No” at step
S100), operation of the instruction specification unit 1201
proceeds to step S135.

When the instruction specification unit 1201 judges that
the first debug mode is not set (“No” at step S105), the
instruction specification unit 1201 checks whether or not the
second debug mode is set (step S120). Checking whether or
not the second debug mode is set is performed based on a
determination result by the debug mode determination unit
1111.

When the instruction specification unit 1201 judges that
the second debug mode is set (“Yes”, at step S115), the
instruction specification unit 1201 checks whether or not the
instruction to be issued is a processing request instruction to
the coprocessor 1002 (step S120).

When the instruction specification unit 1201 judges that
the instruction to be issued is a processing request instruction
to the coprocessor 1002 (“Yes”, at step S120), the detection
unit 1203 checks whether or not the coprocessor 1002 is
executing processing (step S125). Checking whether or not
the coprocessor 1002 is executing processing is performed
based on whether or not the detection unit 1203 is receiving
the busy signal outputted from the instruction processing unit
121.

When the coprocessor 1002 is executing processing
(“Yes”, at step S125), the instruction specification unit 1201
determines that an instruction is not issued in the current cycle
(step S130), and processing returns to step S100.

When judging that the coprocessor 1002 is not executing
processing (“No”, at step S125), the instruction specification
unit 1201 determines that an instruction is issued in the cur-
rent cycle (step S135), and processing returns to step S100.

2.3 Specific Example

Here, explanation is provided, using FIG. 7, of processing
of'the main processor 1001 and processing of the coprocessor
1002, in a case in which the second debug mode is set. Since
a case in which the normal mode is set and a case in which the
first debug mode is set are the same as the cases in embodi-
ment 1, shown in FIG. 3 and FIG. 4, respectively, explanation
thereof is omitted.

When the second debug mode is set and the main processor
1001 is executing instructions from an instruction stream
(t100), a notification is sent to the coprocessor 1002 based on
aprocessing request instruction (t105). In this example, since
the coprocessor 1002 is not executing processing, a notifica-
tion is sent.

When the coprocessor 1002 receives the notification, an
operation at the coprocessor 1002 activates and processing is
executed (t110). While the operation is being performed at the
coprocessor 1002 during t110, the coprocessor 1002 outputs
the busy signal to the main processor 1001.

Even while the coprocessor 1002 is executing processing
(t110), the main processor 1001 continues processing as long
as the instruction to be issued is not a subsequent processing
request instruction (t115). When the instruction to be issued is
the subsequent processing request instruction and the main
processor 1001 is receiving the busy signal, the main proces-
sor 1001 does not execute processing (t120). Afterward, when
the operation at the coprocessor 1002 is completed, the copro-
cessor 1002 stops outputting the busy signal (t125). When
completion of the operation by the coprocessor 1002 is
detected, the main processor 1001 resumes processing. In
other words, the main processor 1001 issues the subsequent
processing request instruction (t130).

US 9,317,287 B2

11

Afterward, when the coprocessor 1002 receives a notifica-
tion based on the subsequent processing request instruction,
an operation at the coprocessor 1002 activates and processing
is executed (t135). Even while the coprocessor 1002 is
executing processing (t135), the main processor 1001 contin-
ues processing as long as the next instruction to be issued is
not another processing request instruction (t140).

3. Embodiment 3

The following is an explanation of embodiment 3 of the
present invention, which is an example of implementation of
the multiprocessor system indicated in embodiment 1.

A multiprocessor system 1501, shown in FIG. 8, is a sys-
tem LSI that performs decoding of images, intended for use in
digital AV equipment.

For example, to decode an image signal compressed using
a standard such as H.264, processing is required such as
bitstream analysis, variable-length decoding (VLD) of sig-
nals subjected to variable-length encoding, inverse quantiza-
tion (IQT) and inverse frequency conversion, motion com-
pensation (MC), image reconstruction (Recon), and
deblocking filter (DBF) processing.

From the above list, the inverse quantization (IQT), the
inverse frequency conversion, the motion compensation
(MC), the image reconstruction (Recon), and the deblocking
filter (DBF) processing (refer to a processing group 1505 in
FIG. 8) may be executed by using data parallelism. Therefore,
such processing is well-suited to processing by a coprocessor
1503, which uses a specialized computing unit. By executing
such processing at the coprocessor 1503, high-performance
decoding is achieved.

Further, for example, by performing pipeline processing on
each macroblock unit and executing in parallel a process 1504
(variable-length decoding (VLD) processing) at a main pro-
cessor 1502, and the processing group 1505 at the coproces-
sor 1503, performance is further increased.

By using the functions in the debug mode described in
embodiment 1, efficient debugging of the multiprocessor sys-
tem 1501 is achieved.

A multiprocessor system 1601, shown in FIG. 9, is a sys-
tem LSI that performs encoding of images, intended for use in
digital AV equipment.

When encoding a macroblock, the following processing is
usually included: motion estimation processing for calculat-
ing a predicted difference with respect to image data to be
encoded, quantization processing for frequency conversion
and quantization of the predicted difference, encoding pro-
cessing for variable-length encoding of a quantized discrete
cosine transform (DCT) coefficient and a movement vector,
processing pertaining to generation of a reference image, and
processing pertaining to motion prediction.

From the above list, the motion estimation processing for
calculating the predicted difference with respect to the image
data to be encoded, the quantization processing for frequency
conversion and quantization of the predicted difference, the
processing pertaining to generating the reference image, and
the motion compensation (refer to a processing group 1605)
are processes that may be executed by using data parallelism.
Therefore such processing is well-suited to processing by a
coprocessor 1603, which uses a specialized computing unit.
By executing such processing at the coprocessor 1603, high-
performance encoding is achieved.

Further, for example, by performing pipeline processing on
each macroblock unit and executing in parallel a process 1604
(variable-length encoding of a quantized DCT coefficient and
a movement vector) at the main processor 1602, and the
processing group 1605 at the coprocessor 1603, performance
is further increased.

25

30

35

40

45

50

55

12

By using the function in the debug mode described in
embodiment 1, efficient debugging of the multiprocessor sys-
tem 1601 is achieved.

4. Modifications

Explanation is given above based on embodiments of the
present invention, but the present invention is not limited to
the embodiments described above. For example, the follow-
ing modifications are possible.

(1) In the embodiments, the main processor judges whether
or not the coprocessor is executing processing using the busy
signal outputted from the coprocessor while the coprocessor
is executing processing, but the present invention is not lim-
ited in this way.

When the coprocessor completes execution of an activated
coprocessor instruction stream, the coprocessor may send a
notification to the instruction issuing determination unit 105
indicating that the processing by the coprocessor is com-
pleted, and the main processor may detect that the processing
by the coprocessor is completed by receiving the notification.

Further, completion of memory access by the coprocessor
may be considered the completion of processing by the
coprocessor. For example, when memory access is indicated
in an instruction stream of the coprocessor and the memory
access of data memory occurs, reading or writing to the data
memory may be delayed with respect to the execution of
instructions in the processor. In such a case, by considering
the completion of memory access as the completion of pro-
cessing by the coprocessor, for example, a malfunction
caused by an address match due to unintended memory
access may be detected.

(2) In embodiment 1, even when non-debug mode opera-
tions are being executed, restriction may be imposed such that
an instruction activating the coprocessor and subsequent
instructions to be executed by the main processor are not
being issued at the same time. In this way, in the debug mode,
an operation using parallelism between instructions at the
main processor and an operation using parallelism between
instructions at the coprocessor may be executed in exactly the
same way as the programmer of the sequence of operations
(non-debug mode operations) ultimately intended.

(3) In embodiment 2, the multiprocessor system 1000 may
allow out-of-order execution.

In such a case, since instructions may be executed in a
different order to the order indicated by the program counter,
even an instruction subsequent to a processing request
instruction, which requires a notification to be executed, may
be executed before the processing request instruction, as long
as the instruction is not dependent on the processing request
instruction.

(4) A program that describes a process of the techniques
explained in the above embodiments may be stored in
memory. Further, a central processing unit (CPU), etc., may
read the program from the memory and execute the program,
whereby the techniques described above may be realized.

Further, a program that describes such a process of the
techniques may be stored on recording media and thereby
distributed.

(5) Each element of the multiprocessor system pertaining
to the above embodiments may be implemented by a hard-
ware resource (in cooperation with a processor and a program
stored in memory).

(6) The above embodiments and modifications may be
combined with one another.

5. Supplement

(1) One aspect of the present invention is a multiprocessor
system comprising a first processor and a second processor

US 9,317,287 B2

13

that executes processing by receiving a notification from the
first processor, wherein the first processor includes: a deter-
mination unit configured to determine whether or not a debug
mode is set; a specification unit configured to sequentially
specify instructions to be executed from an instruction queue;
an execution unit configured to, when an instruction that is
specified is a processing request instruction that requests
processing by the second processor, send a notification that is
based on the processing request instruction to the second
processor, and, when an instruction that is specified is not the
processing request instruction, execute the instruction that is
specified; and a detection unit configured to detect comple-
tion, by the second processor, of the processing correspond-
ing to the notification, and when the determination unit deter-
mines that the debug mode is set, the specification unit stops
specifying instructions upon specifying the processing
request instruction, and resumes specitying instructions after
the detection unit detects the completion of the processing
corresponding to the notification.

According to this configuration, when the determination
unit determines that the debug mode is set, the multiprocessor
system stops specification of instructions after specifying the
processing request instruction, and resumes specifying
instructions after the completion of the requested processing.
In this way, by stopping specification of instructions after
specifying the processing request instruction, the multipro-
cessor system does not issue in parallel an instruction to be
processed by the second processor and an instruction subse-
quent to the specified processing request instruction. Thus,
efficient debugging is performed.

(2) Inthe multiprocessor system pertaining to one aspect of
the present invention, when the second processor is executing
the processing corresponding to the notification, the second
processor may output a signal to the first processor indicating
that the second processor is executing the processing corre-
sponding to the notification, and the detection unit, when the
second processor is outputting the signal, may judge that the
second processor is executing the processing corresponding
to the notification, and when the second processor is no longer
outputting the signal, may judge that the second processor has
completed executing the processing corresponding to the
notification.

According to this configuration, the first processor of the
multiprocessor system detects the completion of the process-
ing by the second processor by the existence or non-existence
of the signal outputted from the second processor.

(3) Inthe multiprocessor system pertaining to one aspect of
the present invention, the completion of the processing cor-
responding to the notification may be when the second pro-
cessor has completed memory access in response to each
memory access instruction included in an instruction stream
for executing the processing corresponding to the notifica-
tion.

According to this configuration, the multiprocessor system
considers the completion of memory access as the completion
of processing by the second processor. Thus, for example, a
malfunction caused by an address match due to unintended
memory access may be detected.

(4) Inthe multiprocessor system pertaining to one aspect of
the present invention, the determination unit may also deter-
mine whether or not a different debug mode other than the
debug mode is set instead of the debug mode, and when the
determination unit determines that the different debug mode
is set, from when the specification unit specifies the process-
ing request instruction and until when the detection unit
detects the completion of the processing corresponding to the
notification, the execution unit may: execute instructions

30

35

40

45

50

14

existing up until a subsequent processing request instruction
appears; or execute instructions existing up until the subse-
quent processing request instruction appears, and then
execute instructions that are positioned after the subsequent
processing request instruction and not dependent on the sub-
sequent processing request instruction, and when the detec-
tion unit detects the completion of the processing correspond-
ing to the notification that is based on the processing request
instruction, the execution unit may send a notification that is
based on the subsequent processing request instruction to the
second processor.

According to this configuration, when the different debug
mode is set, the multiprocessor system does not perform, in
parallel, processing at the second processor corresponding to
notifications based on different processing request instruc-
tions. In this way, before implementing parallel execution of
the processing at the second processor corresponding to the
notifications based on the different processing request
instructions, debugging of parallel processing of the first pro-
cessor and the second processor is performed, efficiently
eliminating malfunctions.

(5) In the multiprocessor system pertaining to one aspect of
the present invention, the first processor may further include
a control unit that performs a control such that, when the
determination unit determines that the debug mode is not set,
specification of instructions is stopped after the specification
unit specifies the processing request instruction, and resumed
upon detection of completion of the processing of the second
processor.

According to this configuration, even when the debug
mode is not set, the multiprocessor system stops specification
of instructions after the processing request instruction is
specified, and resumes specification of instructions upon
detection of completion of the processing of the second pro-
cessor. In this way, an operation using parallelism of each
instruction at the first processor and an operation using par-
allelism of each instruction at the second processor may be
executed in exactly the same way in a non-debug mode as in
the debug mode.

(6) In the multiprocessor system pertaining to one aspect of
the present invention, instructions executed by the first pro-
cessor and instructions executed by the second processor may
be instructions for decoding images, and the multiprocessor
system may be included in an image processing device that
decodes images.

According to this configuration, the multiprocessor system
may efficiently perform debugging of decoding processing.

(7) In the multiprocessor system pertaining to one aspect of
the present invention, instructions executed by the first pro-
cessor and instructions executed by the second processor may
be instructions for encoding images, and the multiprocessor
system may be included in an image processing device that
encodes images.

According to this configuration, the multiprocessor system
may efficiently perform debugging of encoding processing.

INDUSTRIAL APPLICABILITY

The multiprocessor system pertaining to the present inven-
tion implements flexible and efficient computing, and is
therefore applicable to system LSI, etc., that performs media
processing of images and audio for DVD recorders, digital
TVs, etc.

REFERENCE SIGNS LIST

10, 1000 multiprocessor system
11, 1001 main processor

US 9,317,287 B2

15

12, 1002 coprocessor

101 instruction memory

102 instruction fetch control unit

103 instruction group determination unit

104 instruction buffer

105, 1105 instruction issuing determination unit

106 register file

107 computing unit group

108 memory access unit

109 data memory

110 write-back bus

111, 1111 debug mode determination unit

121 instruction processing unit

122 register file

123 computing unit group

124 memory access unit

125 data memory

126 write-back bus

201, 1201 instruction specification unit

202, 1202 instruction execution unit

203, 1203 detection unit

The invention claimed is:

1. A multiprocessor system comprising a first processor
and a second processor that executes processing by receiving
a notification from the first processor, wherein

the first processor includes:

a determination unit configured to determine whether or
not a debug mode is set;

a specification unit configured to sequentially specify
instructions to be executed from an instruction queue;

an execution unit configured to, when an instruction that
is specified is a processing request instruction that
requests processing by the second processor, send a
notification that is based on the processing request
instruction to the second processor, and, when an
instruction that is specified is not the processing
request instruction, execute the instruction that is
specified; and

a detection unit configured to detect completion, by the
second processor, of the processing corresponding to
the notification, and

when the determination unit determines that the debug

mode is set, the specification unit stops specifying
instructions upon specifying the processing request
instruction, and resumes specifying instructions after
the detection unit detects the completion of the process-
ing corresponding to the notification.

2. The multiprocessor system of claim 1, wherein

when the second processor is executing the processing

corresponding to the notification, the second processor
outputs a signal to the first processor indicating that the
second processor is executing the processing corre-
sponding to the notification, and

the detection unit, when the second processor is outputting

the signal, judges that the second processor is executing
the processing corresponding to the notification, and
when the second processor is no longer outputting the
signal, judges that the second processor has completed
executing the processing corresponding to the notifica-
tion.

3. The multiprocessor system of claim 2, wherein

completion of the processing corresponding to the notifi-

cation is when the second processor has completed
memory access in response to each memory access
instruction included in an instruction stream for execut-
ing the processing corresponding to the notification.

10

15

20

25

30

35

40

55

60

65

16

4. The multiprocessor system of claim 1, wherein
the determination unit also determines whether or not a
different debug mode is set instead of the debug mode,
when the determination unit determines that the different
debug mode is set, from when the specification unit
specifies the processing request instruction and until
when the detection unit detects the completion of the
processing corresponding to the notification, the execu-
tion unit:
executes instructions that are specified and not depen-
dent on the processing request instruction, until a
subsequent processing request instruction is speci-
fied; or
executes instructions that are specified and not depen-
dent on the processing request instruction, until the
subsequent processing request instruction is speci-
fied, and then executes instructions that are specified
after the subsequent processing request instruction
and not dependent on the subsequent processing
request instruction, and

when the detection unit detects the completion of the pro-

cessing corresponding to the notification that is based on
the processing request instruction, the execution unit
sends a notification that is based on the subsequent pro-
cessing request instruction to the second processor.

5. The multiprocessor system of claim 1, wherein

instructions executed by the first processor and instructions

executed by the second processor are instructions for
decoding images, and

the multiprocessor system is included in an image process-

ing device that decodes images.

6. The multiprocessor system of claim 1, wherein

instructions executed by the first processor and instructions

executed by the second processor are instructions for
encoding images, and

the multiprocessor system is included in an image process-

ing device that encodes images.

7. A method used by a multiprocessor system including a
first processor and a second processor that executes process-
ing by receiving a notification from the first processor, the
first processor including a determination unit, a specification
unit, an execution unit, and a detection unit, the method
comprising:

the determination unit determining whether or not a debug

mode is set;

the specification unit sequentially specifying instructions

to be executed from an instruction queue;

the execution unit, when an instruction that is specified by

the specification unit is a processing request instruction
that requests processing by the second processor, send-
ing a notification based on the processing request
instruction to the second processor, and, when an
instruction that is specified is an instruction that does not
request processing by the second processor, executing
the instruction that is specified; and

the detection unit detecting completion, by the second

processor, of the processing corresponding to the noti-
fication, wherein

when the determination unit determines that the debug

mode is set, the specification unit stops sequentially
specifying instructions upon specifying the processing
request instruction, and resumes sequentially specifying
instructions after the detection unit detects the comple-
tion of the processing corresponding to the notification.

#* #* #* #* #*

